Learn More
Superconductivity is due to an attractive interaction between electrons that, below a critical temperature, drives them to form Cooper pairs and to condense into a ground state separated by an energy gap from the unpaired states. In the simplest cases, the pairing is mediated by lattice vibrations and the wavefunction of the pairs is isotropic. Less(More)
PACS. 71.20.Gj – Electronic structure of other crystalline metals and alloys. Abstract. – The around-the-mean-field version of the LDA+U method is applied to investigate electron correlation effects in δ-Pu. It yields a non-magnetic ground state of δ−Pu, and provides a good agreement with experimental equilibrium volume, bulk modulus and explains important(More)
We report observations of tunneling anisotropic magnetoresitance (TAMR) in vertical tunnel devices with a ferromagnetic multilayer-(Co/Pt) electrode and a nonmagnetic Pt counterelectrode separated by an AlOx barrier. In stacks with the ferromagnetic electrode terminated by a Co film the TAMR magnitude saturates at 0.15% beyond which it shows only weak(More)
We address the long-standing mystery of the nonmagnetic insulating state of the intermediate valence compound SmB6. Within a combination of the local density approximation (LDA) and an exact diagonalization (ED) of an effective discrete Anderson impurity model, the intermediate valence ground state with the f-shell occupation 〈n4f〉 = 5.6 is found for the Sm(More)
  • 1