A. B. Mohd Noor

Learn More
This paper investigates the use of linear dynamic models (LDMs) to improve classification of single-trial EEG signals. Existing dynamic classification of EEG uses discrete-state hidden Markov models (HMMs) based on piecewise-stationary assumption, which is inadequate for modeling the highly non-stationary dynamics underlying EEG. The continuous hidden(More)
We consider identifying effective connectivity of brain networks from fMRI time series. The standard vector autoregressive (VAR) models fail to give reliable network estimates, typically involving very large number of nodes. This paper adopts a dimensionality reduction approach based on factor modeling, to enable effective and efficient high-dimensional VAR(More)
This paper considers identifying effective cortical connectivity from scalp EEG. Recent studies use time-varying multivariate autoregressive (TV-MAR) models to better describe the changing connectivity between cortical regions where the TV coefficients are estimated by Kalman filter (KF) within a state-space framework. We extend this approach by(More)
  • 1