A. Amassian

Learn More
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent(More)
Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography--a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor(More)
A novel photoactive polymer with two different molecular weights is reported, based on a new building block: thieno[3,2-b][1]benzothiophene isoindigo. Due to the improved crystallinity, optimal blend morphology, and higher charge mobility, solar-cell devices of the high-molecular-weight polymer exhibit a superior performance, affording efficiencies of 9.1%(More)
Theoretical and experimental studies suggest that energetic offsets between the charge transport energy levels in different morphological phases of polymer:fullerene bulk heterojunctions may improve charge separation and reduce recombination in polymer solar cells (PSCs). In this work, we use cyclic voltammetry, UV−vis absorption, and ultraviolet(More)
The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone(More)
The organic electrochemical transistor (OECT), capable of transducing small ionic fluxes into electronic signals in an aqueous environment, is an ideal device to utilize in bioelectronic applications. Currently, most OECTs are fabricated with commercially available conducting poly(3,4-ethylenedioxythiophene) (PEDOT)-based suspensions and are therefore(More)
Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require(More)
  • 1