A. Agranovich

  • Citations Per Year
Learn More
Spatially extended catalyst-induced growth processes are studied. This type of processes exists in all domains of biology, ranging from ecology (nutrients and growth), through immunology (antigens and lymphocytes) to molecular biology (signaling molecules initiating signaling cascades). The extinction-proliferation transition is considered for a system(More)
We here study spatially extended catalyst induced growth processes. This type of process exists in multiple domains of biology, ranging from ecology (nutrients and growth), through immunology (antigens and lymphocytes) to molecular biology (signaling molecules initiating signaling cascades). Such systems often exhibit an extinction-proliferation transition,(More)
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses(More)
The studied linear discrete-continuous system contains two coupled subsystems: one with continuous-time dynamics, the other with discrete-time dynamics. Continuoustime dynamics are described by ordinary linear differential equations, whereas discretetime dynamics are described by difference equations for the system state jumps at prescribed time instants.(More)
The dynamics of birth-death processes with extinction points that are unstable in the deterministic average description has been extensively studied, mainly in the context of the stochastic transition from the mean-field attracting fixed point to the absorbing state. Here we study the opposite case of a small perturbation from the zero-population absorbing(More)
The relation between the complexity of organisms and proteins and their evolution rates has been discussed in the context of multiple generic models. The main robust claim from most such models is the negative relation between complexity and the accumulation rate of mutations. Viruses accumulate escape mutations in their epitopes to avoid detection and(More)
  • 1