Aäron G. Vandeputte

  • Citations Per Year
Learn More
A quantitative comparison of ab initio calculated rate coefficients using five computational methods and five different approaches of treating hindered internal rotation and tunneling with experimental values of rate coefficients for nine carbon-centered radical additions/beta scissions at 300, 600, and 1000 K is performed. The high-accuracy compound(More)
Resonance stabilization of the transition state is one of the key factors in modeling the kinetics of hydrogen abstraction reactions between hydrocarbons. A group additive model is developed which allows the prediction of rate coefficients for bimolecular hydrogen abstraction reactions over a broad range of hydrocarbons and hydrocarbon radicals between 300(More)
One of the requisites for the development of detailed reaction networks is the availability of accurate kinetic data. Group additivity based models linking the Arrhenius parameters to structural characteristics of the transition state have proven to be a valuable tool to obtain those data. In this work, group additivity values are presented to allow a broad(More)
Introduction Polysulfides play a critical role in the optimization of many chemical processes. Dimethyl disulfide (DMDS), for example, is used as coke inhibiting additive in steam cracking furnaces and can also be used as photolytic initiator during free radical polymerization.[1, 2] Also tetrasulfides are frequently used in chemistry, mostly as inhibitors(More)
Despite its use in a wide variety of industrially important thermochemical processes, little is known about the thermal decomposition mechanism of dimethyl disulfide (DMDS). To obtain more insight, the radical decomposition mechanism of DMDS is studied theoretically and a kinetic model is developed accounting for the formation of all the decomposition(More)
Key to understanding the involvement of organosulfur compounds in a variety of radical chemistries, such as atmospheric chemistry, polymerization, pyrolysis, and so forth, is knowledge of their thermochemical properties. For organosulfur compounds and radicals, thermochemical data are, however, much less well documented than for hydrocarbons. The(More)
The automated Reaction Mechanism Generator (RMG), using rate parameters derived from ab initio CCSD(T) calculations, is used to build reaction networks for the thermal decomposition of di-tert-butyl sulfide. Simulation results were compared with data from pyrolysis experiments with and without the addition of a cyclohexene inhibitor. Purely free-radical(More)
Hydrogen abstraction reactions involving organosulfur compounds play an important role in many industrial, biological and atmospheric processes. Despite their chemical relevance, little is known about their kinetics. In this work a group additivity model is developed that allows predicting the Arrhenius parameters for abstraction reactions of α hydrogen(More)
Thermodynamic and kinetic data in the temperature range 300-1500 K are calculated for 94 homolytic substitution reactions by a hydrogen atom at thiols and sulfides with the CBS-QB3//BMK/6-311G(2d,d,p) method. The studied reactions were found to proceed according to a one-step mechanism. A group additivity (GA) method is presented to model the Arrhenius(More)
Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of(More)
  • 1