Learn More
The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference(More)
OBJECTIVE Whole-genome sequencing of circulating cell free (ccf) DNA from maternal plasma has enabled noninvasive prenatal testing for common autosomal aneuploidies. The purpose of this study was to extend the detection to include common sex chromosome aneuploidies (SCAs): [47,XXX], [45,X], [47,XXY], and [47,XYY] syndromes. METHOD Massively parallel(More)
BACKGROUND Circulating cell-free (ccf) fetal DNA comprises 3-20% of all the cell-free DNA present in maternal plasma. Numerous research and clinical studies have described the analysis of ccf DNA using next generation sequencing for the detection of fetal aneuploidies with high sensitivity and specificity. We sought to extend the utility of this approach by(More)
BACKGROUND Efforts have been undertaken recently to assess the fetal genome through analysis of circulating cell-free (ccf) fetal DNA obtained from maternal plasma. Sequencing analysis of such ccf DNA has been shown to enable accurate prenatal detection of fetal aneuploidies, including trisomies of chromosomes 21, 18, and 13. We sought to extend these(More)
Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from(More)
There is concern that the stresses of inducing pluripotency may lead to deleterious DNA mutations in induced pluripotent stem cell (iPSC) lines, which would compromise their use for cell therapies. Here we report comparative genomic analysis of nine isogenic iPSC lines generated using three reprogramming methods: integrating retroviral vectors,(More)
Comprehensive whole-genome structural variation detection is challenging with current approaches. With diploid cells as DNA source and the presence of numerous repetitive elements, short-read DNA sequencing cannot be used to detect structural variation efficiently. In this report, we show that genome mapping with long, fluorescently labeled DNA molecules(More)
One-minimum U-shaped temperature profiles of the dissociation constant (K(m)) have been observed experimentally with a variety of enzyme-substrate (E-S) systems. The increase of E-S affinity with falling temperature ("positive thermal modulation of affinity"), which opposes the cold-induced reduction in catalytic velocity, has been often interpreted as(More)
The remarkable time-resolution enhancement by deep lethargic hypothermia (15 degrees C rectal temperature, "cold narcosis," "anesthesia by internal cold") of metabolic events in the rat brain after oxygen deprivation has been exploited to monitor metabolic changes by in vivo (31)P-NMR. A correlation was established between the bioenergetic status of the(More)
Glucose conversion by brain synaptosomes can be regarded as a special case of intrinsic kinetic properties of the enzyme substrate system. Temperature modulation of apparent K(m) for this process can be described with our kinetic model. Using experimental data and the kinetic model, the minimal K(m) value for glucose conversion in ground squirrel(More)