Learn More
Changes in intrinsic optical signals could be related to cell swelling; however, the evidence is not compelling. We measured light transmittance, ECS volume fraction (alpha), and extracellular K+ in rat spinal cord slices during electrical stimulation and the application of elevated potassium, NMDA, or anisoosmotic solutions. Dorsal root stimulation (10(More)
In rat brain and spinal cord slices, the local extracellular accumulation of K(+), as indicated by K(+) tail currents (I(tail)) after a depolarization step, is greater in the vicinity of oligodendrocytes than that of astrocytes. It has been suggested that this may reflect a smaller extracellular space (ECS) around oligodendrocytes compared to astrocytes(More)
The purpose of this study was to investigate whether rabbit bone marrow-derived mesenchymal stem cells (MSCs) effectively decrease alkali-induced oxidative stress in the rabbit cornea. The alkali (0.15 N NaOH) was applied on the corneas of the right eyes and then rinsed with tap water. In the first group of rabbits the injured corneas remained untreated. In(More)
Glial fibrillary acidic protein (GFAP) is the main component of intermediate filaments in astrocytes. To assess its function in astrocyte swelling, we compared astrocyte membrane properties and swelling in spinal cord slices of 8- to 10-day-old wild-type control (GFAP(+/+)) and GFAP-knockout (GFAP(-/-)) mice. Membrane currents and K(+) accumulation around(More)
[K+]e increase accompanies many pathological states in the CNS and evokes changes in astrocyte morphology and glial fibrillary acidic protein expression, leading to astrogliosis. Changes in the electrophysiological properties and volume regulation of astrocytes during the early stages of astrocytic activation were studied using the patch-clamp technique in(More)
The use of nanotechnology in cell therapy and tissue engineering offers promising future perspectives for brain and spinal cord injury treatment. Stem cells have been shown to selectively target injured brain and spinal cord tissue and improve functional recovery. To allow cell detection, superparamagnetic iron-oxide nanoparticles can be used to label(More)
GFP labeled/NE-4C neural progenitor cells cloned from primary neuroectodermal cultures of p53- mouse embryos give rise to neurons when exposed to retinoic acid in vitro. To study their survival and differentiation in vivo, cells were transplanted into the cortex of 6-week-old rats, 1 week after the induction of a photochemical lesion or into noninjured(More)
Nanotechnology offers promising perspectives in biomedical research as well as in clinical practice. To cover some of the latest nanotechnology trends in regenerative medicine, this review will focus on the use of nanomaterials for tissue engineering and cell therapy. Nanofibrous materials that mimic the native extracellular matrix and promote the adhesion(More)
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating(More)
The transplantation of mesenchymal stem cells (MSC) is currently under study as a therapeutic approach for spinal cord injury, and the number of transplanted cells that reach the lesioned tissue is one of the critical parameters. In this study, intrathecally transplanted cells labeled with superparamagnetic iron oxide nanoparticles were guided by a magnetic(More)