Šárka Štěpánková

Learn More
A series of novel and highly active acetylcholinesterase and butyrylcholinesterase inhibitors derived from substituted benzothiazoles containing an imidazolidine-2,4,5-trione moiety were synthesized and characterized. The molecular structure of 1-(2,6-diisopropyl-phenyl)-3-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-imidazolidine-2,4,5-trione (3g) was(More)
A series of twenty-five novel salicylanilide N-alkylcarbamates were investigated as potential acetylcholinesterase inhibitors. The compounds were tested for their ability to inhibit acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.). Experimental lipophilicity was determined, and the structure-activity relationships are discussed.(More)
Kinetics and the mechanism of total in vitro hydrolyses (i.e. up to the exhaustion of substrate) of acetylcholine and acetylthiocholine by acetylcholinesterase and butyrylcholinesterase were studied in vitro in a batch reactor at 25 degrees C, pH 8 and ionic strength of 0.11 M. Every hydrolysis was monitored by 2-3 independent analytical methods. All(More)
A series of novel cholinesterase inhibitors based on 2-substituted 6-fluorobenzo[d]thiazole were synthesised and characterised by IR, (1)H, (13)C and (19)F NMR spectroscopy and HRMS. Purity was checked by elemental analyses. The novel carbamates were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The(More)
Homological series of 14 achiral derivates and series of five chiral derivates of imidazole were tested in vitro as inhibitors of hydrolysis of acetylcholine using enzyme preparation of acetylcholinesterase from electric eel. The batch stirred reactor at 25 degrees C, pH 8 (phosphate buffer), ionic strength 0.11 M and catalytic activity of the enzyme(More)
Alzheimer's disease is the most common cause of dementia. Currently, acetylcholinesterase (AChE) inhibition is the most widely used therapeutic treatment. A large number of naturally occurring compounds have been found to inhibit AChE. In this report the mechanism of AChE inhibition of two Amaryllidaceae alkaloids, 8-O-demethylmaritidine (1) and undulatine(More)
The power of chosen carbamates and hydrazinium derivatives (carbazates) to inhibit the hydrolysis of acetylthiocholine by butyrylcholinesterase or acetylcholinesterase was tested. The determined pI50 values (= negative logarithm of the molar concentration inhibiting the enzyme activity by 50%) of the tested substances were compared with pI50 values of the(More)
Hydroxylamine and HPLC methods, measuring in vitro kinetics of enzymatic hydrolysis of acetylcholine or acetylthiocholine by cholinesterases, are described. The hydroxylamine method determines the dependence of substrate concentration vs. time, the HPLC method is able to measure simultaneously the time dependences of substrate and both primary products,(More)
Kinetics of hydrolysis of acetylcholine and acetylthiocholine by two types of acetylcholinesterase and butyrylcholinesterase inhibited by 13 new inhibitors (5 carbamates and 8 carbazates--hydrazinium derivatives) was measured in vitro in a batch reactor at 25 degrees C, pH 8, ionic strength 0.11 M and enzyme activity 3.5 U by four nondependent analytical(More)
The pI50 index and separation coefficients of chosen 3-N,N-diethylaminophenyl-N',N'-dialkylcarbamates were determined. Index pL50 (pI50 = negative logarithm of molar concentration of inhibitor inhibiting the enzyme activity by 50%) describes the effectiveness of the inhibitor. The rate of ability of the inhibitor to pass the blood-brain barrier is usually(More)