Learn More
The possible importance of zinc-oxide-based optoelectronic devices is reviewed in this paper, which places special emphasis on the need to achieve p-type ZnO. ABSTRACT | ZnO is an attractive material for applications in electronics, photonics, acoustics, and sensing. In optical emitters, its high exciton binding energy (60 meV) gives ZnO an edge over other(More)
— Although started as red indicator lights based on the GaP:N system, replacing only the nixie (Numeric Indicator eXperimental No. 1) tube, LEDs have become quite a high performance device of late and are revolutionizing the display and illumination sectors of our economy. Presently, the GaN based light emitters adorn the automobiles, traffic lights, moving(More)
We report on the tuning of permittivity and permeability of a ferroelectric/ferromagnetic bilayer structure which can be used as a microwave phase shifter with two degrees of tuning freedom. The structure was prepared by the growth of a yttrium iron garnet ͑YIG͒ layer on a gadolinium gallium garnet substrate by liquid phase epitaxy, the growth of a barium(More)
Optical transition energies and carrier dynamics in colloidally synthesized 2.0 ± 0.8 nm Ge1-xSnx quantum dots (x = 0.055-0.236) having visible luminescence were investigated using steady-state and time-resolved photoluminescence (PL) spectroscopy supported by first-principles calculations. By changing Sn content from x = 0.055 to 0.236, experimentally(More)
Hybrid nanomaterials composed of metal-semiconductor components exhibit unique properties in comparison to their individual counterparts, making them of great interest for optoelectronic applications. Theoretical and experimental studies suggest that interfacial interactions of individual components are of paramount importance to produce hybrid electronic(More)
Aberration-corrected scanning transmission electron microscopy images of the In(0.15)Ga(0.85)N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer's upper boundary. The area(More)
Ge1-xSnx alloy quantum dots (QDs) were synthesized with sizes ranging from 1-3 nm exhibiting visible orange-red photoluminescence. Composition dependent optical properties were characterized and supported by theoretical calculations. Structural analysis suggests the QDs are diamond cubic phase, characteristic of Ge1-xSnx thin films and nanocrystals (NCs)(More)
  • 1