Émilie Gaudry

Learn More
Atomic oxygen adsorption on a pure aluminum terminated Al9Co2(001) surface is studied by first-principle calculations coupled with STM measurements. Relative adsorption energies of oxygen atoms have been calculated on different surface sites along with the associated STM images. The local electronic structure of the most favourable adsorption site is(More)
Surface enhanced resonance Raman scattering (SERRS) is shown to be a satisfying method to study the interaction between DNA and ruthenium complexes [Ru(bpy)(2)(Hcmbpy)][PF(6)](2), where Hcmbpy = 4-carboxy-4'-methyl-2,2'-bipyridine. Such metallic complexes are known for their fluorescence properties. To validate this spectroscopic approach we have checked(More)
We first present an extended introduction of the various methods used to extract electronic and structural information from the K pre-edge X-ray absorption spectra of 3d transition metal ions. The K pre-edge structure is then modelled for a selection of 3d transition metal compounds and analyzed using first-principles calculations based on the density(More)
We have investigated the structure of the Al(13)Fe(4)(010) surface using both experimental and ab initio computational methods. The results indicate that the topmost surface layers correspond to incomplete puckered (P) planes present in the bulk crystal structure. The main building block of the corrugated termination consists of two adjacent pentagons of Al(More)
A combination of experimental methods was used to study the structure of In thin films deposited on the Pd(111) surface and the alloying behavior. X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), and scanning tunneling microscopy results indicate that surface alloying takes place at room temperature. Below 2 monolayer(More)
Point island models (PIMs) are presented for the formation of supported nanoclusters (or islands) during deposition on flat crystalline substrates at lower submonolayer coverages. These models treat islands as occupying a single adsorption site, although carrying a label to track their size (i.e., they suppress island structure). However, they are(More)
The (110) surface of the InPd intermetallic compound and the In-Pd surface alloy properties are investigated in the framework of the density functional theory, within the projector augmented plane-wave method. Surface segregation is calculated to be energetically unfavorable at stoichiometric InPd(110) surfaces, while indium antisites are shown to segregate(More)
The intermetallic compound InPd (CsCl type of crystal structure with a broad compositional range) is considered as a candidate catalyst for the steam reforming of methanol. Single crystals of this phase have been grown to study the structure of its three low-index surfaces under ultra-high vacuum conditions, using low energy electron diffraction (LEED),(More)
The low-temperature surface diffusion of isolated Cr adatoms on Au(111) has been determined using nonperturbing x rays. Changes in the x-ray magnetic circular dichroism spectral line shape together with Monte Carlo calculations demonstrate that adatom nucleation proceeds via quantum tunneling diffusion rather than over-barrier hopping for temperatures <40K.(More)