Élisabeth Dubus

Learn More
OBJECTIVE Although vigabatrin irreversibly constricts the visual field, it remains a potent therapy for infantile spasms and a third-line drug for refractory epilepsies. In albino animals, this drug induces a reduction in retinal cell function, retinal disorganization, and cone photoreceptor damage. The objective of this study was to investigate the light(More)
Several strategies have been proposed to restore useful vision following photoreceptor degeneration. However, a very few studies have investigated late anatomical changes and functional state of residual retinal neurons after complete photoreceptor loss. We investigated the progressive degeneration of retinal ganglion cells (RGCs) in P23H rats. The RGC(More)
BACKGROUND In age related macular degeneration and inherited dystrophies, preservation of retinal ganglion cells has been demonstrated. This finding has led to the development of various models of subretinal or epiretinal implant in order to restore vision. This study addresses the development of a polyimide subretinal electrode platform in the dystrophic(More)
The anti-epileptic drug vigabatrin induces an irreversible constriction of the visual field, but is still widely used to treat infantile spasms and some forms of epilepsy. We recently reported that vigabatrin-induced cone damage is due to a taurine deficiency. However, optic atrophy and thus retinal ganglion cell degeneration was also reported in children(More)
Vigabatrin was a major drug in the treatment of epilepsy until the discovery that it was associated with an irreversible constriction of the visual field. Nevertheless, the drug is still prescribed for infantile spasms and refractory epilepsy. Disorganization of the photoreceptor nuclear layer and cone photoreceptor damage have been described in albino(More)
Retinal ganglion cell (RGC) degeneration occurs in numerous retinal diseases leading to blindness, either as a primary process like in glaucoma, or secondary to photoreceptor loss. However, no commercial drug is yet directly targeting RGCs for their neuroprotection. In the 70s, taurine, a small sulfonic acid provided by nutrition, was found to be essential(More)
Two retinal implants have recently received the CE mark and one has obtained FDA approval for the restoration of useful vision in blind patients. Since the spatial resolution of current vision prostheses is not sufficient for most patients to detect faces or perform activities of daily living, more electrodes with less crosstalk are needed to transfer(More)
Retinal ganglion cells (RGCs) are spiking neurons, which send visual information to the brain, through the optic nerve. RGC degeneration occurs in retinal diseases, either as a primary process or secondary to photoreceptor loss. Mechanisms involved in this neuronal degeneration are still unclear and no drugs directly targeting RGC neuroprotection are yet(More)
Three-dimensional electrode geometries were proposed to increase the spatial resolution in retinal prostheses aiming at restoring vision in blind patients. We report here the results from a study in which finite-element modeling was used to design and optimize three-dimensional electrode geometries. Proposed implants exhibit an array of well-like shapes(More)
In patients affected by Creutzfeldt-Jakob disease and in animals affected by transmissible spongiform encephalopathies, retinal functions are altered, and major spongiform changes are observed in the outer plexiform layer where photoreceptors have their synaptic terminals. In the present study, the prion protein PrP(c) was found to form aggregates in rod(More)