Éliane Souteyrand

Learn More
A biochip approach based on porous silicon as substrate is presented. The goal is to enhance the sensitivity of the biochip by increasing the specific surface area on the support. The elaboration of porous silicon layers has been optimized to guarantee good accessibility for large bio-molecule targets. Oligonucleotide probes are synthesised directly on the(More)
Pseudomonas aeruginosa (PA) is an opportunistic bacterium involved in 10-30% of nosocomial diseases. It causes severe lung injury to cystic fibrosis patients, often leading to patient death. PA strains are multidrug resistant, thus making the design of new therapeutics a challenge for public health. One promising therapeutic option is to design(More)
There is an urgent need to identify relevant tumor markers showing high sensitivity and specificity for early diagnosis and prognosis of breast cancer. Protein microarrays have demonstrated to be cost-effective, high through-put and powerful tools for screening and identifying tumor markers with only minute samples. Autoantibodies directed against(More)
DNA chips are potentially powerful technologies for genotyping and gene expression profiling that rely on comparative analyses of up to thousands of "spots of analysis" on a glass support. The spot quality throughout the support influences spot-to-spot variations within an array and the repeatability of data across experiments. For glass slide DNA(More)
Sugar-coated chips: Glycoside clusters are valuable tools for carbohydrate-lectin recognition studies. However, the spatial arrangement of the sugar residues is a key issue in the design of high-affinity glycoclusters. Here the affinities of linear and antenna- and calixarene-based galactoside clusters towards two lectins derived from Pseudomonas aeruginosa(More)
Glycoarrays are powerful tools for the understanding of protein/carbohydrate interactions and should find applications in the diagnosis of diseases involving these interactions. Immobilisation of the carbohydrate probe is a key issue in the elaboration of high performance devices. In the present study, we have compared the fluorescent signal intensity and(More)
DNA microarrays are a powerful experimental tool for the detection of specific genomic sequences and are invaluable to a broad array of applications: clinical diagnosis, personalized medicine, drug research and development, gene therapy, food control technologies, and environmental sciences. Alloimmunization to human platelet antigens (HPAs) is commonly(More)
Site-directed mutagenesis has greatly helped researchers both to understand the precise role of specific residues in coding sequences and to generate variants of proteins that have acquired new characteristics. Today's demands for more complete functional cartographies of proteins and advances in selection and screening technologies require that(More)
This paper presents a comprehensive theory and experimental characterisation of the modulation of the fluorescence intensity by the construction of optical interferences on oxidised silicon substrates used for DNA microarrays. The model predicts a 90-fold variation of the fluorescence signal depending on the oxide thickness. For a Cy3 dye, the signal is(More)