Ángel Sandoval

Learn More
The role of wildlife in tuberculosis epidemiology is being widely studied since it can affect the effectiveness of eradication campaigns in cattle. The health problem is enhanced when it concerns also wildlife welfare and biodiversity conservation. This study was performed to understand the epidemiology of Mycobacterium bovis population affecting livestock(More)
Overexpression of the gene encoding the poly-3-hydroxy-n-phenylalkanoate (PHPhA) depolymerase (phaZ) in Pseudomonas putida U avoids the accumulation of these polymers as storage granules. In this recombinant strain, the 3-OH-acyl-CoA derivatives released from the different aliphatic or aromatic poly-3-hydroxyalkanoates (PHAs) are catabolized through the(More)
The substrate specificity of the two polymerases (PhaC1 and PhaC2) involved in the biosynthesis of medium-chain-length poly-hydroxyalkanoates (mcl PHAs) in Pseudomonas putida U has been studied in vivo. For these kind of experiments, two recombinant strains derived from a genetically engineered mutant in which the whole pha locus had been deleted (P. putida(More)
The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules,(More)
These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and(More)
The complete catabolic pathway involved in the assimilation of 3-hydroxyphenylacetic acid (3-OH-PhAc) in Pseudomonas putida U has been established. This pathway is integrated by the following: (i) a specific route (upper pathway), which catalyzes the conversion of 3-OH-PhAc into 2,5-dihydroxyphenylacetic acid (2,5-diOH-PhAc) (homogentisic acid, Hmg), and(More)
Fatty acid transport proteins (FATPs) are bifunctional proteins, which transport long chain fatty acids into cells and activate very long chain fatty acids by esterification with coenzyme A. In an effort to understand the linkage between cellular fatty acid transport and the pathology associated with excessive accumulation of exogenous fatty acids, we(More)
One principal process driving fatty acid transport is vectorial acylation, where fatty acids traverse the membrane concomitant with activation to CoA thioesters. Current evidence is consistent with the proposal that specific fatty acid transport (FATP) isoforms alone or in concert with specific long chain acyl CoA synthetase (Acsl) isoforms function to(More)
Functional analyses of the different proteins involved in the synthesis and accumulation of polyhydroxyalkanoates (PHAs) in P. putida U were performed using a mutant in which the pha locus had been deleted (PpUDeltapha). These studies showed that: (i) Pha enzymes cannot be replaced by other proteins in this bacterium, (ii) the transformation of PpDeltapha(More)
We report an easy procedure for isolating chromosome-clustered genes. By following this methodology, the entire set of genes belonging to the phenylacetic acid (PhAc; 18-kb) pathway as well as those required for the synthesis and mobilization of different polyhydroxyalkanoates (PHAs; 6.4 kb) in Pseudomonas putida U were recovered directly from the bacterial(More)