Ákos Balázs

Learn More
As there is no hardware support neither for rendering trimmed NURBS -- the standard surface representation in CAD -- nor for T-Spline surfaces the usability of existing rendering APIs like OpenGL, where a run-time tessellation is performed on the CPU, is limited to simple scenes. Due to the irregular mesh data structures required for trimming no algorithms(More)
Most of the industrial parts are designed as trimmed NURBS. For their efficient rendering multiresolution models are needed. To create such models without artifacts at the trimming curves, one needs to sew parts together along the common boundaries. Due to the problem of determining the geometric places in 3D space along the trimming curves where sewing(More)
Despite recent advances in finding efficient LOD-representations for gigantic 3D objects, rendering of complex, gigabyte-sized models and environments is still a challenging task, especially under real-time constraints and high demands on the visual accuracy. The two general approaches are using either a polygon-or a point-based representation for the(More)
The most efficient general occlusion culling techniques are based on hardware accelerated occlusion queries. Although in many cases these techniques can considerably improve performance, they may still reduce efficiency compared to simple view frustum culling, especially in the case of low depth complexity. This prevented the broad use of occlusion culling(More)
Trimmed NURBS are the standard surface representation used in CAD/CAM systems and accurate visualization of trimmed NURBS models at interactive frame rates is of great interest for industry. To support modification and/or animation of such surfaces, a GPU-based trimming and tessellation algorithm has been developed recently. First, the NURBS is approximated(More)
Trimmed NURBS models are the standard representation used in CAD/CAM systems and accurate visualization of large trimmed NURBS models at interactive frame rates is of great interest for industry. To visualize the quality of a surface several techniques like isophotes, reflection lines, etc. are used. Most existing approaches transform the NURBS surfaces(More)
For rendering purposes trimmed NURBS surfaces have to be converted into a polygonal representation. In order to fulfill the high quality visualization demands posed by various design and quality control applications, current NURBS rendering methods require a careful preparation of the converted models which often needs manual user intervention. This(More)