Learn More
Morphological and functional data indicate that glutamatergic innervation of the hypothalamic paraventricular nucleus plays an important role in the control of this prominent cell group. Sources of this neural input are unknown. The present investigations were aimed at studying this question. The retrograde tracer [3H]D-aspartate, which is selectively taken(More)
Little is known about the neurochemical features of the nucleus reuniens thalami (RE). In the present study, immunocytochemical experiments were performed to characterize the expression pattern of certain neurochemical markers, e.g. the calcium-binding proteins calbindin and calretinin and several neuropeptides. Colocalization studies revealed that half of(More)
The hypothalamic suprachiasmatic nucleus (SCN), which plays a pivotal role in the control of circadian rhythms, consists of several neuronal subpopulations characterized by different neuroactive substances. This prominent cell group has a fairly rich glutamatergic innervation, but the cell types that are targeted by this innervation are unknown. Therefore,(More)
It is well established that the supramammillary nucleus plays a critical role in hippocampal theta rhythm generation/regulation by its direct and indirect (via the septal complex) connections to the hippocampus. Previous morphological and electrophysiological studies indicate that both the supramammillo-hippocampal and supramammillo-septal efferents contain(More)
The medial preoptic area is a key structure in the neural control of reproduction. Considerable evidence has accumulated indicating that glutamatergic innervation of the area plays an important role in this control. Sources of the glutamatergic input are unknown. Present investigations were aimed at studying this question. [3H]D-aspartate, which is(More)
The medial preoptic area is a key structure in the control of reproduction. Several data suggest that excitatory amino acids are involved in the regulation of this function and the major site of this action is the medial preoptic region. Data concerning the neuromorphology of the glutamatergic innervation of the medial preoptic area are fragmentary. The(More)
By means of double-label immunocytochemistry, authors studied the presence of estrogen receptor α (ER-α) protein in vesicular glutamate transporter 2 (VGluT2) protein-immunoreactive neurons in the female rat hypothalamus and amygdala. They examined colocalization of the 2 immunoreactive proteins in structures in which they found a significant overlap in the(More)
The supramammillary neurons projecting directly to the hippocampus or indirectly via the septum participate in the regulation of hippocampal theta activity. Inputs to the supramammillary nucleus are only partly specified neurochemically. Glutamate appears to be an excitatory transmitter in this cell group, however, the origin of the glutamatergic afferents(More)
Growth hormone-releasing hormone (GHRH) and beta-endorphin are mainly synthesized in neurones of the hypothalamic arcuate nucleus. Arcuate neurones also contain both ionotropic and metabotropic glutamate receptors. The aim of present study was to investigate whether glutamate receptors are present in GHRH and beta-endorphin containing nerve cells of this(More)
In our present work utilizing the retrograde or anterograde transport of tracers (biotinylated dextran amine and Fluorogold, respectively) we have provided direct evidence for the cells of origin of the limboretinal pathway in rats and their termination in the retina using light microscopic approach. Administration of biotinylated dextran amine into the(More)